Part Number Hot Search : 
2SC5100 MTC50150 HMC15811 5KP33A STG3384 CR1910 MAX20271 AD6435
Product Description
Full Text Search
 

To Download LT5560EDDPBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  lt5560 1 5560f 0.01mhz to 4ghz low power active mixer the lt ? 5560 is a low power, high performance broad- band active mixer. this double-balanced mixer can be driven by a single-ended lo source and requires only C2dbm of lo power. the balanced design results in low lo leakage to the output, while the integrated input ampli? er provides excellent lo to in isolation. the sig- nal ports can be impedance matched to a broad range of frequencies, which allows the lt5560 to be used as an up- or down-conversion mixer in a wide variety of applications. the lt5560 is characterized with a supply current of 10ma; however, the dc current is adjustable, which allows the performance to be optimized for each application with a single resistor. for example, when biased at its maximum supply current (13.4ma), the typical upconverting mixer iip3 is +10.8dbm for a 900mhz output. portable wireless catv/dbs receivers wimax radios phs basestations rf instrumentation microwave data links vhf/uhf 2-way radios up or downconverting applications noise figure: 9.3db typical at 900mhz output conversion gain: 2.4db typical iip3: 9dbm typical at i cc = 10ma adjustable supply current: 4ma to 13.4ma low lo drive level: C2dbm single-ended or differential lo high port-to-port isolation enable control with low off-state leakage current single 2.7v to 5v supply small 3mm 3mm dfn package low cost 900mhz downconverting mixer applicatio s u features descriptio u typical applicatio u , lt, ltc and ltm are registered trademarks of linear technology corporation. all other trademarks are the property of their respective owners. if out and im3 levels vs rf input power 1 2 3 4 8 9 7 6 5 in + in lo en en out + out lo + u1 lt5560 pgnd rf in 900mhz lo in 760mhz if out 140mhz v cc 15nh 100pf 100pf 4.7pf 6.8nh 270nh 5560 ta01 270nh 15nh 6.8nh 270nh 1nf 1 f 2.7v to 5.3v 33pf 4.7pf 100pf 4.7pf 4.7pf rf input power (dbm) ?0 power level (dbm/tone) ?0 ?0 10 ?0 ?0 0 ?0 ?0 ?0 ?6 ?2 ? ? 5560 ta02 0 ?8 ?0 ?4 ?0 ? ? im3 if out t a = 25 c v cc = 3v i cc = 13.3ma f lo = 760mhz f if = 140mhz
lt5560 2 5560f dc electrical characteristics supply voltage .........................................................5.5v enable voltage ................................ C0.3v to v cc + 0.3v lo input power (differential) .............................+10dbm input signal power (differential) ........................+10dbm in + , in C dc currents ..............................................10ma out + , out C dc current .........................................10ma t jmax .................................................................... 125c operating temperature range .................C40c to 85c storage temperature range ...................C65c to 125c (note 1) v cc = 3v, en = 3v, t a = 25c, unless otherwise noted. test circuit shown in figure 1. (note 3) parameter conditions min typ max units power supply requirements (v cc ) supply voltage 2.7 3 5.3 v supply current v cc = 3v, r1 = 3 10 12 ma shutdown current en = 0.3v, v cc = 3v 0.1 10 a enable (en) low = off, high = on en input high voltage (on) 2v en input low voltage (off) 0.3 v enable pin input current en = 3v en = 0.3v 25 0.1 a a turn on time 2s turn off time 5s absolute axi u rati gs w ww u package/order i for atio uu w top view dd package 8-lead (3mm 3mm) plastic dfn 5 6 7 8 4 3 2 1 lo en in + in lo + v cc out + out 9 t jmax = 125c, ja = 43c/w exposed pad (pin 9) is gnd must be soldered to pcb order part number dd part marking lt5560edd lcbx order options tape and reel: add #tr lead free: add #pbf lead free tape and reel: add #trpbf lead free part marking: http://www.linear.com/leadfree/ consult ltc marketing for parts speci? ed with wider operating temperature ranges. ac electrical characteristics parameter conditions min typ max units signal input frequency range (note 4) requires external matching < 4000 mhz lo input frequency range (note 4) requires external matching < 4000 mhz signal output frequency range (note 4) requires external matching < 4000 mhz (notes 2 and 3)
lt5560 3 5560f ac electrical characteristics v cc = 3v, en = 3v, t a = 25c, p in = C20dbm (C20dbm/tone for 2-tone iip3 tests, f = 1mhz), p lo = C2dbm, unless otherwise noted. test circuits are shown in figures 1, 2 and 3. (notes 2 and 3) parameter conditions min typ max units signal input return loss z = 50 , external match 15 db lo input return loss z = 50 , external match 15 db signal output return loss z = 50 , external match 15 db lo input power C 6 to 1 dbm parameter conditions min typ max units conversion gain f in = 70mhz, f out = 450mhz f in = 140mhz, f out = 900mhz f in = 140mhz, f out = 1900mhz 2.7 2.4 1.2 db db db conversion gain vs temperature t a = C 40c to 85c, f out = 900mhz C 0.015 db/c input 3rd order intercept f in = 70mhz, f out = 450mhz f in = 140mhz, f out = 900mhz f in = 140mhz, f out = 1900mhz 9.6 9.0 8.0 dbm dbm dbm input 2nd order intercept f in = 70mhz, f out = 450mhz f in = 140mhz, f out = 900mhz f in = 140mhz, f out = 1900mhz 46 47 30 dbm dbm dbm single sideband noise figure f in = 70mhz, f out = 450mhz f in = 140mhz, f out = 900mhz f in = 140mhz, f out = 1900mhz 8.8 9.3 10.3 db db db in to lo isolation (with lo applied) f in = 70mhz, f out = 450mhz f in = 140mhz, f out = 900mhz f in = 140mhz, f out = 1900mhz 69 64 64 db db db lo to in leakage f in = 70mhz, f out = 450mhz f in = 140mhz, f out = 900mhz f in = 140mhz, f out = 1900mhz C63 C54 C36 dbm dbm dbm lo to out leakage f in = 70mhz, f out = 450mhz f in = 140mhz, f out = 900mhz f in = 140mhz, f out = 1900mhz C44 C41 C36 dbm dbm dbm input 1db compression point f in = 70mhz, f out = 450mhz f in = 140mhz, f out = 900mhz f in = 140mhz, f out = 1900mhz 0.4 C2.8 C0.8 dbm dbm dbm upconverting mixer con? guration: v cc = 3v, en = 3v, t a = 25c, p in = C20dbm (C20dbm/tone for 2-tone iip3 tests, f = 1mhz), p lo = C2dbm, unless otherwise noted. high side lo for 450mhz tests, low side lo for 900mhz and 1900mhz tests. test circuits are shown in figures 1 and 3. (notes 2, 3 and 5) parameter conditions min typ max units conversion gain f in = 450mhz, f out = 70mhz f in = 900mhz, f out = 140mhz f in = 1900mhz, f out = 140mhz 2.7 2.6 2.3 db db db conversion gain vs temperature t a = C 40c to 85c, f in = 900mhz C 0.015 db/c input 3rd order intercept f in = 450mhz, f out = 70mhz f in = 900mhz, f out = 140mhz f in = 1900mhz, f out = 140mhz 10.1 9.7 5.6 dbm dbm dbm single sideband noise figure f in = 450mhz, f out = 70mhz f in = 900mhz, f out = 140mhz f in = 1900mhz, f out = 140mhz 10.5 10.1 10.8 db db db downconverting mixer con? guration: v cc = 3v, en = 3v, t a = 25c, p in = C20dbm (C20dbm/tone for 2-tone iip3 tests, f = 1mhz), p lo = C2dbm, unless otherwise noted. high side lo for 450mhz tests, low side lo for 900mhz and 1900mhz tests. test circuits are shown in figures 2 and 3. (notes 2, 3 and 5)
lt5560 4 5560f voltage (v) 2.5 8 current (ma) 9 10 11 12 3 3.5 4 4.5 5560 g01 5 5.5 25 c 85 c ?0 c voltage (v) 2.5 0.0 current ( a) 0.2 0.4 0.8 1.0 3 3.5 4 4.5 5560 g02 0.6 5 5.5 25 c 85 c ?0 c ac electrical characteristics note 1: stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. exposure to any absolute maximum rating condition for extended periods may affect device reliability and lifetime. note 2: each set of frequency conditions requires an appropriate test board. note 3: speci? cations over the C40c to +85c temperature range are assured by design, characterization and correlation with statistical process controls. supply current vs supply voltage shutdown current vs supply voltage typical dc perfor a ce characteristics uw (test circuit shown in figure 1) parameter conditions min typ max units in to lo isolation (with lo applied) f in = 450mhz, f out = 70mhz f in = 900mhz, f out = 140mhz f in = 1900mhz, f out = 140mhz 52 52 25 db db db lo to in leakage f in = 450mhz, f out = 70mhz f in = 900mhz, f out = 140mhz f in = 1900mhz, f out = 140mhz C52 C57 C37 dbm dbm dbm lo to out leakage f in = 450mhz, f out = 70mhz f in = 900mhz, f out = 140mhz f in = 1900mhz, f out = 140mhz C47 C63 C24 dbm dbm dbm 2rf C 2lo output spurious (half if) product (f in = f lo + f out /2) 450mhz: f in = 485mhz, f out = 70mhz 900mhz: f in = 830mhz, f out = 140mhz 1900mhz: f in = 1830mhz, f out = 140mhz C68 C69 C47 dbc dbc dbc 3rf C 3lo output spurious (1/3 if) product (f in = f lo + f out /3) 450mhz: f in = 496.7mhz, f out = 69.9mhz 900mhz: f in = 806.7mhz, f out = 140.1mhz 1900mhz: f in = 1806.7mhz, f out = 140.1mhz C79 C76 C62 dbc dbc dbc input 1db compression point f in = 450mhz, f out = 70mhz f in = 900mhz, f out = 140mhz f in = 1900mhz, f out = 140mhz C0.8 0 C2.2 dbm dbm dbm note 4: operation over a wider frequency range is possible with reduced performance. consult the factory for information and assistance. note 5: ssb noise figure measurements are performed with a small- signal noise source and bandpass ? lter on the rf input (downmixer) or output (upmixer), and no other rf input signal applied. downconverting mixer con? guration: v cc = 3v, en = 3v, t a = 25c, p in = C20dbm (C20dbm/tone for 2-tone iip3 tests, f = 1mhz), p lo = C2dbm, unless otherwise noted. high side lo for 450mhz tests, low side lo for 900mhz and 1900mhz tests. test circuits are shown in figures 2 and 3. (notes 2, 3 and 5)
lt5560 5 5560f gain (db) 0 distribution (%) 10 30 40 50 60 5560 g09 20 ?5 c +25 c +90 c 1.7 1.9 2.1 2.5 2.7 3.1 3.3 2.9 2.3 3.5 iip3 (dbm) 7.8 8.2 8.6 9.4 9.8 0 distribution (%) 5 15 20 25 45 5560 g10 10 9.0 10.2 30 35 40 ?5 c +25 c +90 c ssb noise figure (db) 0 distribution (%) 10 30 40 50 60 5560 g11 20 ?5 c +25 c +90 c 7.6 8.0 8.4 9.2 9.5 10.0 8.8 10.4 rf output frequency (mhz) gain (db), iip3 (dbm) 5560 g03 850 870 930 910 890 950 0 2 4 6 8 10 1 3 5 7 9 11 4 6 8 10 12 14 5 7 9 11 13 15 25 c 85 c ?0 c ssb nf iip3 gain noise figure (db) lo input power (dbm) ?0 ? 0 2 4 6 10 ? 6 ? ? 5560 g04 02 8 gain (db), iip3 (dbm) 25 c 85 c ?0 c iip3 gain 7 noise figure (db) 9 11 13 5560 g05 15 17 8 10 12 14 16 lo input power (dbm) ?0 ? 6 ? ? 0 2 25 c 85 c ?0 c lo frequency (mhz) 700 leakage (dbm) ?0 ?0 ?0 820 5560 g06 ?0 ?0 740 780 720 840 760 800 860 ?0 ?0 0 lo-out lo-in voltage (v) 2.5 3.5 4.5 5 5560 g07 4 10 11 12 2 8 6 3 9 0 1 7 5 3 4 5.5 gain (db), iip3 (dbm) 25 c 85 c ?0 c iip3 gain if input power (dbm) ?0 output power (dbm/tone) ?0 ?0 0 5560 g08 ?0 ?00 ?5 ?0 ? 0 ?0 25 c 85 c ?0 c im3 rf out im2 conversion gain, iip3 and ssb nf vs rf output frequency conversion gain and iip3 vs lo input power ssb noise figure vs lo input power lo-in and lo-out leakage vs lo frequency conversion gain and iip3 vs supply voltage rf out , im3 and im2 vs if input power (two input tones) typical ac perfor a ce characteristics uw 900mhz upconverting mixer application: v cc = 3v, i cc = 10ma, en = 3v, t a = 25c, f in = 140mhz, p in = C20dbm (C20dbm/tone for 2-tone iip3 tests, f = 1mhz), f lo = 760mhz, p lo = C2dbm, output measured at 900mhz, unless otherwise noted. (test circuit shown in figure 1) gain distribution at 900mhz iip3 distribution at 900mhz ssb noise figure distribution at 900mhz
lt5560 6 5560f rf output frequency (mhz) gain (db), iip3 (dbm) 5560 g12 350 400 500 450 550 0 2 4 6 8 10 1 3 5 7 9 11 25 c 85 c ?0 c iip3 gain rf output frequency (mhz) noise figure (db) 5560 g13 350 400 500 450 550 4 6 8 10 12 5 7 9 11 13 14 25 c 85 c ?0 c ?0 ?0 ?0 ?0 ?0 0 5560 g14 ?0 ?0 ?0 ?0 if input power (dbm) ?0 output power (dbm/tone) 0 ?5 ?0 ? 25 c 85 c ?0 c im3 rf out im2 lo input power (dbm) ?0 0 2 4 6 8 12 ? 6 ? ? 5560 g15 02 10 gain (db), iip3 (dbm) 25 c 85 c ?0 c iip3 gain lo input power (dbm) ?0 6 noise figure (db) 7 9 10 11 16 13 ? ? 0 5560 g16 8 14 15 12 ? ? 2 25 c 85 c ?0 c lo frequency (mhz) 350 ?0 ?0 ?0 ?0 ?0 ?0 0 400 450 500 550 5560 g17 600 650 ?0 leakage (dbm) lo-out lo-in rf output frequency (mhz) 1800 gain (db), iip3 (dbm) 3 9 10 11 1950 5560 018 0 1 7 5 2 8 ? 6 4 1850 1900 2000 25 c 85 c ?0 c iip3 gain rf output frequency (mhz) noise figure (db) 5560 g19 1800 1850 1950 1900 2000 4 6 8 10 12 5 7 9 11 13 14 25 c 85 c ?0 c if input power (dbm) ?0 output power (dbm/tone) ?0 ?0 ?0 0 5560 g20 ?0 ?0 ?0 ?5 ?0 ? ?0 0 ?0 25 c 85 c ?0 c im3 rf out im2 typical ac perfor a ce characteristics uw 450mhz upconverting mixer application: v cc = 3v, i cc = 10ma, en = 3v, t a = 25c, f in = 70mhz, p in = C20dbm (C20dbm/tone for 2-tone iip3 tests, f = 1mhz), f lo = 520mhz, p lo = C2dbm, output measured at 450mhz, unless otherwise noted. (test circuit shown in figure 3) conversion gain and iip3 vs rf output frequency ssb noise figure vs rf output frequency rf out , im3 and im2 vs if input power (two input tones) conversion gain and iip3 vs lo input power ssb noise figure vs lo input power lo-in and lo-out leakage vs lo frequency conversion gain and iip3 vs rf output frequency ssb noise figure vs rf output frequency rf out , im3 and im2 vs if input power (two input tones) 1900mhz upconverting mixer application: v cc = 3v, i cc = 10ma, en = 3v, t a = 25c, f in = 140mhz, p in = C20dbm (C20dbm/tone for 2-tone iip3 tests, f = 1mhz), f lo = 1760mhz, p lo = C2dbm, output measured at 1900mhz, unless otherwise noted. (test circuit shown in figure 1)
lt5560 7 5560f lo input power (dbm) ?0 10 8 6 4 2 0 ? ? ? 0 5560 g21 ? 6 ? 2 gain (db), iip3 (dbm) 25 c 85 c ?0 c iip3 gain lo input power (dbm) ?0 7 9 11 13 15 19 ? 6 ? ? 5560 g22 02 17 noise figure (db) 25 c 85 c ?0 c lo frequency (mhz) 1660 leakage (dbm) ?0 ?0 1860 5560 g23 ?0 ?0 1710 1760 1810 0 ?0 lo-out lo-in rf input frequency (mhz) 700 ? 1 3 5 7 11 800 900 1000 1100 5560 g24 1200 9 3 5 7 9 11 15 13 gain (db), iip3 (dbm) noise figure (db) 25 c 85 c ?0 c iip3 gain ssb nf lo input power (dbm) ?0 12 10 8 6 4 2 0 ? ? 0 5560 g25 ? ? ? 2 gain (db), iip3 (dbm) 25 c 85 c ?0 c iip3 gain lo input power (dbm) ?0 7 noise figure (db) 9 11 13 15 17 ? ? ? ? 5560 g26 02 25 c 85 c ?0 c lo frequency (mhz) 500 leakage (dbm) ?0 ?0 ?0 800 1000 5560 g27 ?0 ?0 ?0 600 700 900 ?0 ?0 0 1100 lo-in lo-out rf input power (dbm) output power (dbm) 5560 g28 ?0 ?5 ? ?0 0 ?00 ?0 ?0 ?0 ?0 0 ?0 ?0 ?0 ?0 ?0 10 t a = 25 c f lo = 760mhz f if = 140mhz 3rf ?3lo f rf = 806.7mhz if out f rf = 900mhz 2rf ?2lo f rf = 830mhz lo input power (dbm) ?0 ? 6 ? ? 5560 g29 02 ?10 ?00 ?0 ?0 ?0 ?0 ?0 output power (dbm) t a = 25 c f lo = 760mhz f if = 140mhz 3rf ?3lo f rf = 806.7mhz 2rf ?2lo f rf = 830mhz conversion gain and iip3 vs lo input power ssb noise figure vs lo input power lo-in and lo-out leakage vs lo frequency conversion gain, iip3 and ssb nf vs rf input frequency conversion gain and iip3 vs lo input power ssb noise figure vs lo input power lo-in and lo-out leakage vs lo frequency if out , 2 2 and 3 3 spurs vs rf input power (single input tone) 2 2 and 3 3 spurs vs lo input power (single input tone) typical ac perfor a ce characteristics uw 1900mhz upconverting mixer application: v cc = 3v, i cc = 10ma, en = 3v, t a = 25c, f in = 140mhz, p in = C20dbm (C20dbm/tone for 2-tone iip3 tests, f = 1mhz), f lo = 1760mhz, p lo = C2dbm, output measured at 1900mhz, unless otherwise noted. (test circuit shown in figure 1) 900mhz downconverting mixer application: v cc = 3v, i cc = 10ma, en = 3v, t a = 25c, f in = 900mhz, p in = C20dbm (C20dbm/tone for 2-tone iip3 tests, f = 1mhz), f lo = 760mhz, p lo = C2dbm, output measured at 140mhz, unless otherwise noted. (test circuit shown in figure 2)
lt5560 8 5560f voltage (v) 2.5 gain (db), iip3 (dbm) 3 9 11 12 10 3.5 4.5 5 5560 g30 1 7 5 2 8 0 6 4 3 4 5.5 25 c 85 c ?0 c iip3 gain rf input power (dbm) output power (dbm/tone) 5560 g31 ?0 ?6 ? ?0 ?8 ? ?2 ?4 ? ? 0 ?0 ?0 ?0 ?0 0 ?0 ?0 ?0 ?0 ?0 10 if out im3 25 c 85 c ?0 c rf input frequency (mhz) gain (db), iip3 (dbm) noise figure (db) 5560 g32 350 400 500 450 550 ? 3 7 11 1 5 9 13 3 7 11 15 5 9 13 17 25 c 85 c ?0 c iip3 gain ssb nf lo input power (dbm) ?0 12 10 8 6 4 2 0 ? ? 0 5560 g33 ? ? ? 2 gain (db), iip3 (dbm) 25 c 85 c ?0 c iip3 gain lo input power (dbm) ?0 7 noise figure (db) 9 11 13 15 17 ? ? ? ? 5560 g34 02 25 c 85 c ?0 c lo frequency (mhz) 420 leakage (dbm) ?0 ?0 ?0 5560 g35 ?0 ?0 520 470 570 620 ?0 ?0 0 lo-out lo-in rf input power (dbm) output power (dbm) 5560 g36 ?0 ?5 ? ?0 0 ?10 ?0 ?0 ?0 ?0 ?0 10 t a = 25 c f lo = 520mhz f if = 70mhz 3rf ?3lo f rf = 496.7mhz if out f rf = 450mhz 2rf ?2lo f rf = 485mhz lo input power (dbm) ?0 ? 6 ? ? 5560 g37 02 ?10 ?00 ?0 ?0 ?0 ?0 ?0 output power (dbm) t a = 25 c f lo = 520mhz f if = 70mhz 3rf ?3lo f rf = 496.7mhz 2rf ?2lo f rf = 485mhz conversion gain and iip3 vs supply voltage if out and im3 vs rf input power (two input tones) conversion gain, iip3 and ssb nf vs rf input frequency conversion gain and iip3 vs lo input power ssb noise figure vs lo input power lo-in and lo-out leakage vs lo frequency if out , 2 2 and 3 3 spurs vs rf input power (single input tone) 2 2 and 3 3 spurs vs lo input power (single input tone) typical ac perfor a ce characteristics uw 900mhz downconverting mixer application: v cc = 3v, i cc = 10ma, en = 3v, t a = 25c, f in = 900mhz, p in = C20dbm (C20dbm/tone for 2-tone iip3 tests, f = 1mhz), f lo = 760mhz, p lo = C2dbm, output measured at 140mhz, unless otherwise noted. (test circuit shown in figure 2) 450mhz downconverting mixer application: v cc = 3v, i cc = 10ma, en = 3v, t a = 25c, f in = 450mhz, p in = C20dbm (C20dbm/tone for 2-tone iip3 tests, f = 1mhz), f lo = 520mhz, p lo = C2dbm, output measured at 70mhz, unless otherwise noted. (test circuit shown in figure 3)
lt5560 9 5560f input frequency (mhz) 1700 12 10 8 6 4 2 0 1850 1950 5560 g38 1750 1800 1900 2000 gain, nf (db), iip3 (dbm) 25 c 85 c ?0 c ssb nf iip3 gain lo input power (dbm) ?0 ? 0 2 4 6 10 ? 6 ? ? 5560 g39 02 8 ? ? 0 2 4 8 6 gain (db) iip3 (dbm) 25 c 85 c ?0 c iip3 gain lo input power (dbm) ?0 7 noise figure (db) 9 11 13 15 17 ? ? ? ? 5560 g40 02 25 c 85 c ?0 c lo frequency (mhz) 1560 ?0 ?0 ?0 ?0 0 1610 1660 1710 1760 5560 g41 1810 1860 ?0 leakage (dbm) lo-out lo-in rf input power (dbm) output power (dbm) 5560 g42 ?0 ?5 ? ?0 0 ?0 ?0 ?0 ?0 ?0 10 t a = 25 c f lo = 1760mhz f if = 140mhz 3rf ?3lo f rf = 1806.7mhz if out f rf = 1900mhz 2rf ?2lo f rf = 1830mhz lo input power (dbm) ?0 ? 6 ? ? 5560 g43 02 ?00 ?0 ?0 ?0 ?0 ?0 ?0 output power (dbm) t a = 25 c f lo = 1760mhz f if = 140mhz 3rf ?3lo f rf = 1806.7mhz 2rf ?2lo f rf = 1830mhz conversion gain, iip3 and ssb nf vs rf input frequency conversion gain and iip3 vs lo input power typical ac perfor a ce characteristics uw 1900mhz downconverting mixer application: v cc = 3v, i cc = 10ma, en = 3v, t a = 25c, f in = 1900mhz, p in = C20dbm (C20dbm/tone for 2-tone iip3 tests, f = 1mhz), f lo = 1760mhz, p lo = C2dbm, output measured at 140mhz, unless otherwise noted. (test circuit shown in figure 2) ssb noise figure vs lo input power lo-in and lo-out leakage vs lo frequency if out , 2 2 and 3 3 spurs vs rf input power (single input tone) 2 2 and 3 3 spurs vs lo input power (single input tone)
lt5560 10 5560f pi fu ctio s uuu lo C , lo + (pins 1, 8): differential inputs for the local oscillator signal. the lo input impedance is approxi- mately 180 , thus external impedance matching is required. the lo pins are internally biased to approxi- mately 1v below v cc ; therefore, dc blocking capacitors are required. the lt5560 is characterized and production tested with a single-ended lo drive, though a differential lo drive can be used. en (pin 2): enable pin. an applied voltage above 2v will activate the ic. for v en below 0.3v, the ic will be shut down. if the enable function is not required, then this pin should be connected to v cc . the typical enable pin input current is 25a for en = 3v. the enable pin should not be allowed to ? oat because the mixer may not turn on reliably. note that at no time should the en pin voltage be allowed to exceed v cc by more than 0.3v. in + , in C (pins 3, 4): differential inputs. these pins should be driven with a differential signal for optimum performance. each pin requires a dc current path to ground. resistance to ground will cause a decrease in the mixer current. with 0 resistance, approximately 6ma of dc current ? ows out of each pin. for lowest lo leakage to the output, the dc resistance from each pin to ground should be equal. an impedance transformation is required to match the differential input to the desired source impedance. out C , out + (pins 5, 6): differential outputs. an imped- ance transformation may be required to match the outputs. these pins require a dc current path to v cc . v cc (pin 7): power supply pin for the bias circuits. typical current consumption is 1.5ma. this pin should be externally bypassed with a 1nf chip capacitor. exposed pad (pin 9): pgnd. circuit ground return for the entire ic. this must be soldered to the printed circuit board ground plane.
lt5560 11 5560f block diagra w pgnd in + in out + out input buffer amplifier en 5560 bd 1 8 3 4 6 5 2 7 lo 9 lo + double- balanced mixer bias v cc
lt5560 12 5560f test circuits component values for f out = 900mhz, f in = 140mhz and f lo = 760mhz ref des value size part number ref des value size part number c1 22pf 0402 avx 04025a220jat l1, l2 18nh 1005 toko ll1005-fh18nj c3, c5 100pf 0402 avx 04025a101jat l3, l4 27nh 1005 toko ll1005-fh27nj c4 1pf 0402 avx 04025a1r0bat l5 12nh 1005 toko ll1005-fh12nj c6, c9 1nf 0402 avx 04023c102jat r1 3 0402 c8 1f 0603 taiyo yuden lmk107bj105ma t1 1:1 coilcraft wbc1-1tl c10 2.2pf 0402 avx 04025a2r2bat t2 4:1 tdk hhm1515b2 note: c7 not used. component values for f out = 1900mhz, f in = 140mhz and f lo = 1760mhz ref des value size part number ref des value size part number c1 22pf 0402 avx 04025a220jat l1, l2 18nh 1005 toko ll1005-fh18nj c3 100pf 0402 avx 04025a101jat l3, l4 3.9nh 1005 toko ll1005-fh3n9s c7 1.5pf 0402 avx 04025a1r5bat l5 5.6nh 1005 toko ll1005-fh5n6s c6, c9 1nf 0402 avx 04023c102jat r1 3 0402 c8 1f 0603 taiyo yuden lmk107bj105ma t1 1:1 coilcraft wbc1-1tl c10 1pf 0402 avx 04025a1r0bat t2 1:1 tdk hhm1525 note: c4 and c5 are not used. figure 1. test schematic for 900mhz and 1900mhz upconverting mixer applications with 140mhz input out 1 2 3 1 2 2 1 3 3 4 4 8 7 6 5 in + in lo en en out + out lo + lt5560 pgnd in 6 45 lo in v cc c4 c7 l5 c3 c5 c1 c6 c8 r1 l1 l2 l3 l4 c10 t2 t1 c9 v cc 5560 f01
lt5560 13 5560f test circuits component values for f in = 900mhz, f out = 140mhz and f lo = 760mhz ref des value size part number ref des value size part number c1 2.2pf 0402 avx 04025a2r2bat l1, l2 0 1005 0 resistor c2 1.2pf 0402 avx 04025a1r2bat l3, l4 220nh 1608 toko ll1608-fsr22j c3, c5 100pf 0402 avx 04025a101jat l5 12nh 0402 toko ll1005-fh12nj c4 1pf 0402 avx 04025a1r0bat r1 3 0402 c6 1nf 0402 avx 04023c102jat t1 1:1 tdk hhm1522b1 c8 1f 0603 taiyo yuden lmk107bj105ma t2 4:1 m/a-com mabaes0061 note: c7 not used. component values for f in = 1900mhz, f out = 140mhz and f lo = 1760mhz ref des value size part number ref des value size part number c1 1.0pf 0402 avx 04025a1r0bat l1, l2 0 1005 0 resistor c2 1.2pf 0402 avx 04025a1r2bat l3, l4 220nh 1608 toko ll1608-fsr22j c3 100pf 0402 avx 04025a101jat l5 5.6nh 1005 toko ll1005-fh5n6s c7 1.5pf 0402 avx 04025a1r5bat r1 3 0402 c6 1nf 0402 avx 04023c102jat t1 2:1 tdk hhm1526 c8 1f 0603 taiyo yuden lmk107bj105ma t2 4:1 m/a-com mabaes0061 note: c4 and c5 are not used. figure 2. test schematic for 900mhz and 1900mhz downconverting mixer applications with 140mhz input out 1 2 3 4 2 2 4 3 3 4 5 8 7 6 5 in + in lo en en out + out lo + lt5560 pgnd in 1 16 lo in v cc c4 c7 l5 c3 c5 c1 c6 c8 r1 l1 l2 c2 l3 l4 t2 t1 v cc 5560 f02
lt5560 14 5560f test circuits upconverting mixer component values for f in = 70mhz, f out = 450mhz and f lo = 520mhz ref des value size part number ref des value size part number c1 39pf 0402 avx 04025390jat l1, l2 33nh 1005 toko ll1005-fh33nj c3, c5, c6 1nf 0402 avx 04023c102jat l3, l4 68nh 1608 toko ll1608-fs68nj c4 1.5pf 0402 avx 04025a1r5bat l5 22nh 1005 toko ll1005-fh22nj c8 1f 0603 taiyo yuden lmk107bj105ma r1 3 0402 c10 1.5pf 0402 avx 04025a1r5bat t1 1:1 coilcraft wbc1-1tl t2 4:1 m/a-com mabaes0061 note: c11 is not used. downconverting mixer component values for f in = 450mhz, f out = 70mhz and f lo = 520mhz ref des value size part number ref des value size part number c3, c5, c6 1nf 0402 avx 04023c102jat l3, l4 0 0402 0 resistor c4 1.5pf 0402 avx 04025a1r5bat l5 22nh 0402 toko ll1005-fh22nj c8 1f 0603 taiyo yuden lmk107bj105ma r1 3 0402 c11 5.6pf 0603 avx 06035a5r6bat t1 1:1 coilcraft wbc1-1tl l1, l2 0 0402 0 resistor t2 16:1 coilcraft wbc16-1tl note: c1 and c10 not used. figure 3. test schematic for 450mhz upconverting mixer and downconverting mixer applications out 2 3 1 2 2 4 3 3 4 4 8 7 6 5 in + in lo en en out + out lo + lt5560 pgnd in 6 16 lo in v cc c4 l5 c3 c5 c1 c6 c8 r1 l1 l2 l3 l4 t2 t1 v cc 5560 f03 c11 c10
lt5560 15 5560f applicatio s i for atio wu u u the lt5560 consists of a double-balanced mixer, a com- mon-base input buffer ampli? er, and bias/enable circuits. the ic has been designed for frequency conversion applica- tions up to 4ghz, though operation over a wider frequency range may be possible with reduced performance. for best performance, the input and output should be connected differentially. the lo input can be driven by a single-ended source with either low side or high side lo operation. the lt5560 is characterized and production tested using a single-ended lo drive. the quiescent dc current of the lt5560 can be adjusted from less than 4ma to approximately 13.5ma through the use of an external resistor. this functionality gives the user the ability to make application dependent trade-offs between iip3 performance and dc current. three demo boards, as described in table 1, are available depending on the desired application. the listed input and output frequency ranges are based on measured 12db return loss bandwidths and the lo port frequency ranges are based on 10db return loss bandwidths. the general circuit topologies are shown in figures 1, 2 and 3 for dc963b, dc991a and dc1027a, respectively. the board layouts are shown in figures 23, 24 and 25. the low frequency board, dc1027a, can be recon? gured for upconverting applications. figure 4. input port with lowpass external matching topology provided through the center-tap of an input transformer, as shown, or through matching inductors or chokes con- nected from pins 3 and 4 to ground. in + in input lt5560 c1 r1 l1 l2 t1 v bias 3 4 5560 f04 signal input port figure 4 shows a simpli? ed schematic of the differential input signal port and an example topology for the external impedance matching circuit. pins 3 and 4 each source up to 6ma of dc current. this current can be reduced by the addition of resistor r1 (adjustable mixer current is discussed in a later section). the dc ground path can be table 1. lt5560 demo board descriptions mixer description demo board number input freq. (mhz) output freq. (mhz) lo freq. (mhz) upconverting, cellular band dc963b 50-190 850-940 530-930 downconverting cellular band dc991a 710-1300 110-170 530-930 downconverting, vhf band dc1027a 115-295 3-60 180-310 note: consult factory for demo boards for umts, wlan and other bands. the lowpass impedance matching topology shown may be used to transform the differential input impedance at pins 3 and 4 to match that of the signal source. the differential input impedances for several frequencies are listed in table 2. table 2. input signal port differential impedance frequency (mhz) input impedance ( ) reflection coefficient (z o = 50 ) mag angle (deg.) 70 28.5 + j0.8 0.274 177 140 28.5 + j1.6 0.274 174 240 28.6 + j2.7 0.275 171 360 28.6 + j4.0 0.276 167 450 28.6 + j4.9 0.278 163 750 28.8 + j8.2 0.287 153 900 28.8 + j9.8 0.294 148 1500 29.1 + j16.3 0.328 138 1900 29.4 + j20.8 0.357 120 2150 29.6 + j23.6 0.376 114 2450 29.9 + j27.0 0.399 107 3600 31.7 + j42.1 0.499 86.2
lt5560 16 5560f applicatio s i for atio wu u u the following example demonstrates the design of a lowpass impedance transformation network for a signal input at 900mhz. the simpli? ed input circuit is shown in figure 5. for this example, the input transformer has a 1:1 impedance ratio, so r s = 50 . from table 2, at 900mhz, the differential input impedance is: r l + jx int = 28.8 + j9.8 . the internal reactance will be used as part of the impedance matching network. the matching circuit consists of additional exter- nal series inductance (l1 and l2) and a capacitance (c1) in parallel with the 50 source impedance. the external capacitance and inductance are calculated below. first, calculate the impedance transformation ratio ( n ) and the network q: n == = q =? () = n 1 0 858 . next, the capacitance and inductance can be calculated as follows: x r q c s == ? c x pf c 1 1 303 == x l = r l ? q = 24.7 x ext = x l C x int = 14.9 ll lx nh ext ext 12 22 132 == = = ? ? the internal inductance has been accounted for by subtract- ing the internal reactance (x int ) from the total reactance (x l ). small inductance values may be realized using high- impedance printed transmission lines instead of lumped inductors. the equations above provide good starting values, though the values may need to be optimized to account for layout and component parasitics.
lt5560 17 5560f table 3 lists actual component values used on the lt5560 evaluation boards for impedance matching at various frequencies. the measured input return loss vs fre- quency performance is plotted for several of the cases in figure 6. figure 6. input return loss vs frequency for different matching values table 3. component values for input matching case freq. (mhz) t1 c1 (pf) l1, l2 (nh) match bw (@12db rl) 1 10 wbc1-1tl 1:1 220 180 6-18 2 70 wbc1-1tl 1:1 39 33 29-102 3 140 wbc1-1tl 1:1 22 18 50-190 4 240 wbc1-1tl 1:1 15 12 115-295 5 450 1 wbc1-1tl 1:1 na 0 390-560 6 900 hhm1522b1 1:1 2.2 0 710-1630 7 1900 hhm1526 2:1 1 0 1660-2500 8 2450 hhm1520a2 2:1 1 0 1640-2580 9 3600 hhm1583b1 2:1 0.5 0 3330-3840 note 1: series 5.6pf capacitor is used at the input (see figure 3). lo input port figure 7 shows a simpli? ed schematic of the lo input. the lo input connections drive the bases of the mixer transis- tors, while a 200 resistor across the inputs provides the impedance termination. the internal 1k bias resistors are in parallel with the input resistor resulting in a net input dc resistance of approximately 180 . the pins are biased by an internally generated voltage at approximately 1v below v cc ; thus external dc blocking capacitors are required. if desired, the lo inputs can be driven differen- tially. the required lo drive at the ic is 240mv rms (typ) which can come from a 50 source or a higher impedance such as pecl. figure 7. lo input schematic lo + lo c3 c5 l5 lt5560 1k 1k 200 ? c4 c7 8 1 v cc lo in 50 ? v bias 5560 f07 frequency (mhz) 10 ?0 return loss (db) ?0 ? 0 100 1000 4000 5560 f06 ?5 ?0 ?5 1 2 3 4 5 6 7 9
lt5560 18 5560f frequency (mhz) 100 ?0 return loss (db) ?0 ? 0 1000 4000 5560 f08 ?5 ?0 ?5 1 2 3 4 6 8 applicatio s i for atio wu u u figure 8. typical lo input return loss vs frequency for different matching values reactive matching from the lo source to the lo input is recommended to take advantage of the resulting voltage gain. to assist in matching, table 4 lists the single-ended input impedances of the lo input port. actual com- ponent values, for several lo frequencies, are listed in table 5. figure 8 shows the typical return loss response for each case. table 4. single-ended lo input impedance (parallel equivalent) frequency (mhz) input impedance ( ) reflection coefficient (z o = 50 ) mag angle (deg.) 150 161 || Cj679 0.529 C9.3 520 142 || Cj275 0.494 C23.3 760 130 || Cj192 0.475 C33.5 1660 74 || Cj98 0.347 C74.5 1760 69 || Cj94 0.330 C80.1 2040 60 || Cj89 0.308 C90.1 2210 51 || Cj91 0.266 C104 3150 50 || Cj103 0.235 C104 3340 33 || Cj41 0.472 C138 table 5. component values for lo input matching case freq. (mhz) c4 (pf) l5 (nh) c7 (pf) c3, c5 (pf) match bw (@12db rl) 1 150 8.2 68 - 1000 120-180 2 250 4.7 47 - 1000 195-300 3 520 1.5 22 - 1000 390-605 4 760 1 12 - 100 590-890 5 1200 - 6.8 - 100 850-1430 6 1760 - 4.7 1 100 1 1540-1890 7 2900 - 1 1 10 2690-3120 8 3150 - 0 - 10 2990-3480 note 1: c5 is not used at 1760mhz
lt5560 19 5560f applicatio s i for atio wu u u signal output port a simpli? ed schematic of the output circuit is shown in figure 9. the output pins, out + and out C , are internally connected to the collectors of the mixer transistors. these pins must be biased at the supply voltage, which can be applied through a transformer center-tap, impedance matching inductors, rf chokes, or pull-up resistors. with external resistor r1 = 3 (figures 1 to 3), each out pin draws about 4.5ma of supply current. for optimum per- formance, these differential outputs should be combined externally through a transformer or balun. an equivalent small-signal model for the output is shown in figure 10. the output impedance can be modeled as a 1.2k resistor in parallel with a 0.7pf capacitor. for low frequency applications, the 0.7nh series bond-wire inductances can be ignored. the external components, c2, l3 and l4, form a lowpass impedance transformation network to match the mixer output impedance to the input impedance of transformer t2. the values for these components can be estimated figure 9. output port schematic figure 10. output port small-signal model with external matching out + out 0.7pf lt5560 1.2k v cc 5560 f09 6 5 using the impedance parameters listed in table 6 along with similar equations as used for the input matching net- work. as an example, at an output frequency of 140mhz and r l = 200 (using a 4:1 transformer for t2), n == = r r s l 1082 200 541 . q =? () = n 1210 . x r q c s == 515  c x pf c == 1 221  . c2 = c C c int = 1.51pf x l = r l ? q = 420 ll x nh l 34 2 239 == =  out lt5560 c2 c10 0.7nh 0.7nh l3 l4 t2 v cc 6 5 5560 f10 out + out c int 0.7pf r int 1.2k
lt5560 20 5560f frequency (mhz) 0 500 1000 2000 ?0 return loss (db) ?0 ? 0 1500 2500 5560 f11 ?5 ?0 ?5 7 3 4 6 8 applicatio s i for atio wu u u in cases where the calculated value of c2 is less than the internal output capacitance, capacitor c10 can be used to improve the impedance match. figure 11. output return loss vs frequency for different matching values table 7 lists actual component values used on the lt5560 evaluation boards for impedance matching at several frequencies. the measured output return loss vs frequency performance is plotted for several of the cases in figure 11. table 6. output port differential impedance (parallel equivalent) frequency (mhz) output impedance ( ) reflection coefficient (z o = 50 ) mag angle (deg.) 70 1098 || Cj3185 0.913 C1.8 140 1082 || Cj1600 0.912 C3.6 240 1082 || Cj974 0.912 C5.9 360 1093 || Cj646 0.913 C8.9 450 1083 || Cj522 0.913 C11.0 750 1037 || Cj320 0.910 C17.8 900 946 || Cj269 0.903 C21.1 1500 655 || Cj162 0.870 C34.5 1900 592 || Cj122 0.865 C44.6 2150 662 || Cj108 0.883 C50.0 2450 612 || Cj95.7 0.879 C55.4 3600 188 || Cj53.1 0.756 C88.7 table 7. component values for output matching case freq. (mhz) t2 c2 (pf) l3, l4 (nh) c10 (pf) match bw (@12db rl) 1 10 wbc16-1tl 16:1 - 0 - 3-60 2 70 wbc16-1tl 16:1 - 0 - 1 3-60 3 140 mabaes0061 4:1 1.5 220 - 110-170 4 240 mabaes0061 4:1 0.5 120 - 175-300 5 380 mabaes0061 4:1 - 68 - 290-490 6 450 mabaes0061 4:1 - 68 1.5 360-540 7 900 hhm1515b2 4:1 - 27 2.2 850-940 8 1900 hhm1525 1:1 - 3.9 1 1820-2000 note 1: a better 70mhz match can be realized by adding a shunt 180nh inductor at the c10 location.
lt5560 21 5560f r1 ( ? ) 0 4 supply current (ma) 6 8 10 5 10 15 20 5560 f13 25 12 14 5 7 9 11 13 30 t a = 25 c v cc = 3v supply current (ma) 4 gain and nf (db), iip3 (dbm) 4 6 8 10 14 5560 f14 2 0 ? 68 12 10 12 14 ssb nf iip3 gain t a = 25 c v cc = 3v f lo = 760mhz f if = 140mhz p lo = ?dbm supply current (ma) 4 gain and nf (db), iip3 (dbm) 4 6 8 10 14 5560 f15 2 0 ? 68 12 10 12 14 ssb nf iip3 gain measured with inf cap across r1 t a = 25 c v cc = 3v f lo = 760mhz f if = 140mhz p lo = ?dbm applicatio s i for atio wu u u figure 12. enable input circuit enable interface figure 12 shows a simpli? ed schematic of the en pin interface. the voltage necessary to turn on the lt5560 is 2v. to disable the chip, the enable voltage must be less than 0.3v. if the en pin is allowed to ? oat, the chip will tend to remain in its last operating state, thus it is not recom- mended that the enable function be used in this manner. if the shutdown function is not required, then the en pin should be connected directly to v cc . the voltage at the en pin should never exceed the power supply voltage (v cc ) by more than 0.3v. if this should occur, the supply current could be sourced through the en pin esd diode, potentially damaging the ic. figure 13. typical supply current vs r1 value figure 14. 900mhz upconverting mixer gain, noise figure and iip3 vs supply current figure 15. 900mhz downconverting mixer gain, noise figure and iip3 vs supply current adjustable supply current the lt5560 offers a direct trade-off between power sup- ply current and linearity. this capability allows the user to optimize the performance and power dissipation of the mixer for a particular application. the supply current can be adjusted by changing the value of resistor r1 at the center-tap of the input balun. for downconversion applications, a bypass capacitor in parallel with r1 may be desired to minimize noise ? gure. the bypass capacitor has a greater effect on noise ? gure at larger values of r1. in upmixer con? gurations, adding a capacitor across r1 has little effect. figure 13 shows the supply current as a function of r1. note that the current will also be affected by parasitic resistance in the matching components. figure 14 il- lustrates the effect of supply current on gain, iip3 and nf of a 900mhz upconverting mixer. the performance lt5560 60k en v cc 5560 f12 2 vs current of a 900mhz downconverting mixer is plotted in figure 15. in this example, a 1nf capacitor has been placed in parallel to r1 for best noise ? gure.
lt5560 22 5560f output frequency (mhz) 170 8 10 14 230 270 5560 f16 6 4 190 210 250 290 310 2 0 12 gain (db), iip3 (dbm) f if = 10mhz f lo = f rf + f if iip2 iip3 gain 52 58 56 54 50 48 46 44 iip2 (dbm) lo input power (dbm) ?0 9 11 ? 2 5560 f17 7 5 ? ? 02 3 1 12 14 10 8 6 4 gain (db), iip3 (dbm) f rf = 140mhz f if = 10mhz f lo = 150mhz ssb nf iip3 gain noise figure (db) rf input frequency (mhz) 3300 gain nf (db), iip3 (dbm) 7 9 11 3700 5560 f18 5 3 6 8 10 4 2 1 3400 3500 3600 3800 dsb nf iip3 gain figure 16. lt5560 performance in 240mhz upconverting mixer application figure 17. lt5560 performance in 140mhz downconverting mixer application figure 18. lt5560 performance as a 3600mhz downconverting mixer applicatio s i for atio wu u u application examples the lt5560 may be used as an upconverting or downconverting mixer in a wide variety of applications, in addition to those identi? ed in the datasheet. the fol- lowing examples illustrate the versatility of the lt5560. (the component values for each case can be found in tables 3, 5 and 7). figure 16 demonstrates gain, iip3 and iip2 performance versus rf output frequency for the lt5560 when used as a 240mhz upconverting mixer. the input frequency is 10mhz, with an lo frequency of 250mhz. the circuit uses the topology shown in figure 1. the performance in a 140mhz downconverting mixer application is plotted in figure 17. in this case the gain, iip3 and nf are shown as a function of lo power with an if output frequency of 10mhz. the circuit topology for this case is shown in figure 3. the lt5560 operation at higher frequencies is demon- strated in figure 18, where the performance of a 3600mhz downconverting mixer is shown. the conversion gain, iip3 and dsb nf are plotted for an rf input frequency range of 3300 to 3800mhz and an if frequency of 450mhz. the circuit is the same topology as shown in figure 2.
lt5560 23 5560f c dc c o c o r b l o l o l dc r a 5560 f19 applicatio s i for atio wu u u lumped element matching the applications described so far have employed external transformers or hybrid baluns to realize single-ended to differential conversions and, in some cases, impedance transformations. an alternate approach is to use lumped- element baluns to realize the input or output matching networks. a lumped element balun topology is shown in figure 19. the desired component values can be estimated using the equations below, where r a and r b are the terminat- ing resistances on the unbalanced and balanced ports, respectively. variable f c is the desired center frequency. (the resistances of the lt5560 input and output can be found in tables 2 and 6). l rr f o ab c = 2 c frr o cab = 1 2 the computed values are approximate, as they dont ac- count for the effects of parasitics of the ic and external components. inductor l dc is used to provide a dc path to ground or to v cc depending on whether the circuit is used at the input or output of the lt5560. in some cases, it is desirable to make the value of l dc as large as practical to minimize loading on the circuit; however, the value can also be op- timized to tune the impedance match. the shunt inductor, l o , provides the dc path for the other balanced port. capacitor c dc may be required for dc blocking but can often be omitted if dc decoupling is not required. figure 19. lumped element balun in some applications, c dc is useful for optimizing the impedance match. the circuit shown on page 1 illustrates the use of lumped element baluns. in this example, the lt5560 is used to convert a 900mhz input signal down to 140mhz using a 760mhz l o signal. for the 900mhz input, r a = 50 and r b = 28 (from table 2). the actual values used for c o and l o are 4.7pf and 6.8nh, which agree very closely with the calculated values of 4.7pf and 6.6nh. the 15nh shunt inductor, in this case, has been used to optimize the impedance match, while the 100pf cap provides dc decoupling. at the 140mhz output, the values used for r a and r b are 50 and 1080 (from table 6), respectively, which result in calculated values of c o = 4.9pf and l o = 265nh. these values are very close to the actual values of 4.7pf and 270nh. a shunt inductor (l dc ) of 270nh is used here and the 33pf blocking cap has been used to optimize the impedance.
lt5560 24 5560f applicatio s i for atio wu u u measured if out and im3 levels vs rf input power for the mixer with lumped element baluns are shown on page 1. additional performance parameters vs rf input frequency are plotted in figure 20. figure 20. performance of 900mhz downconverting mixer with lumped element baluns low frequency applications at low if frequencies, where transformers can be impracti- cal due to their large size and cost, alternate methods can be used to achieve desired differential to single-ended conversions. the examples in figures 21 and 22 use an op-amp to demonstrate performance with an output fre- quency of 450khz. pull-up resistors r3 and r4 are used at the open-collector if outputs instead of large inductors. the op-amp provides gain and converts the mixer dif- ferential outputs to single-ended. at low frequencies, the lo port can be easily matched with a shunt resistor and a dc blocking cap. this if interface circuit can be used for signals up to 1mhz. figure 21 shows an input match that uses a transformer to present a differential signal to the mixer. a possible alternative, shown in figure 22, is to use a single-ended drive on one input pin, with the other pin grounded. this approach is more cost effective than the transformer, however, some performance is sacri? ced. another option is to use a lumped-element balun, which requires only one more component than the single-ended impedance match, but could provide better performance. measured data for the examples below are summarized in table 8. table 8. low-frequency performance f in (mhz) f out (mhz) g c (db) iip3 (dbm) dsb nf (db) i cc (ma) 200 0.45 9 3.8 11.6 14 90 0.45 6.8 3.3 22 18 figure 21. a 200mhz to 450khz downconverter with active if interface input frequency (mhz) 800 4 gain and nf (db), iip3 (dbm) 5 7 8 9 900 1000 13 5560 f20 6 850 950 10 11 12 ssb nf iip3 gain 1 2 3 4 8 7 6 5 9 in + in lo en out + out lo + pgnd rf in 200mhz if out 450khz lo in 200.45mhz v cc v en c3 10nf c5 10nf c6 1nf c11 1 f c13 1 f c14 1 f c8 1 f c12 1 f c1 15pf r1 3 ? r2 160 ? r3 200 ? r4 200 ? r5 200 ? r7 51 ? r8 5.1k ? 5v r9 5.1k ? r6 200 ? l2 12nh l1 12nh t1 1:1 wbc4-6tl 5560 f21 + u1 lt5560 u2 lt6202
lt5560 25 5560f figure 23. upconverting mixer evaluation board (dc963b)see table 1 applicatio s i for atio wu u u figure 22. 90mhz downconverter with a low cost discrete balun input and a 450khz active if interface 1 2 3 4 8 7 6 5 9 in + in lo en out + out lo + pgnd rf in 90mhz if out 450khz lo in 90.45mhz v cc v en c3 10nf c5 10nf c6 1nf c11 1 f c13 1 f c14 1 f c8 1 f c12 1 f r2 160 ? r3 200 ? r4 200 ? r5 200 ? r7 51 ? r8 5.1k ? 5v r9 5.1k ? r6 200 ? l2 82nh l1 12nh 5560 f22 + u1 lt5560 u2 lt6202 c1 56pf
lt5560 26 5560f typical applicatio s u figure 24. downconverting mixer evaluation board (dc991a)see table 1 figure 25. hf/vhf/uhf upconverting or downconverting mixer evaluation board (dc1027a)see table 1
lt5560 27 5560f package descriptio u information furnished by linear technology corporation is believed to be accurate and reliable. however, no responsibility is assumed for its use. linear technology corporation makes no representa- tion that the interconnection of its circuits as described herein will not infringe on existing patent rights. dd8 package 8-lead plastic dfn (3mm 3mm) (reference ltc dwg # 05-08-1698) 3.00 0.10 (4 sides) note: 1. drawing to be made a jedec package outline m0-229 variation of (weed-1) 2. drawing not to scale 3. all dimensions are in millimeters 4. dimensions of exposed pad on bottom of package do not include mold flash. mold flash, if present, shall not exceed 0.15mm on any side 5. exposed pad shall be solder plated 6. shaded area is only a reference for pin 1 location on top and bottom of package 0.38 0.10 bottom view?xposed pad 1.65 0.10 (2 sides) 0.75 0.05 r = 0.115 typ 2.38 0.10 (2 sides) 1 4 8 5 pin 1 top mark (note 6) 0.200 ref 0.00 ?0.05 (dd8) dfn 1203 0.25 0.05 2.38 0.05 (2 sides) recommended solder pad pitch and dimensions 1.65 0.05 (2 sides) 2.15 0.05 0.50 bsc 0.675 0.05 3.5 0.05 package outline 0.25 0.05 0.50 bsc
lt5560 28 5560f linear technology corporation 1630 mccarthy blvd., milpitas, ca 95035-7417 (408) 432-1900 fax: (408) 434-0507 www.linear.com ? linear technology corporation 2006 lt 0406 ? printed in usa related parts part number description comments infrastructure lt5511 high linearity upconverting mixer rf output to 3ghz, 17dbm iip3, integrated lo buffer lt5512 1khz to 3ghz high signal level downconverting mixer 20dbm iip3, integrated lo buffer, hf/vhf/uhf optimized lt5514 ultralow distortion, if ampli? er/adc driver with digitally controlled gain 850mhz bandwidth, 47dbm oip3 at 100mhz, 10.5db to 33db gain control range lt5515 1.5ghz to 2.5ghz direct conversion quadrature demodulator 20dbm iip3, integrated lo quadrature generator lt5516 0.8ghz to 1.5ghz direct conversion quadrature demodulator 21.5dbm iip3, integrated lo quadrature generator lt5517 40mhz to 900mhz quadrature demodulator 21dbm iip3, integrated lo quadrature generator lt5518 1.5ghz to 2.4ghz high linearity direct quadrature modulator 22.8dbm oip3 at 2ghz, C158.2dbm/hz noise floor, 50 1 single-ended lo and rf ports, 4-ch w-cdma acpr = C64dbc at 2.14ghz lt5519 0.7ghz to 1.4ghz high linearity upconverting mixer 17.1dbm iip3 at 1ghz, integrated rf output transformer with 50 1 matching, single-ended lo and rf ports operation lt5520 1.3ghz to 2.3ghz high linearity upconverting mixer 15.9dbm iip3 at 1.9ghz, integrated rf output transformer with 50 1 matching, single-ended lo and rf ports operation lt5521 10mhz to 3700mhz high linearity upconverting mixer 24.2dbm iip3 at 1.95ghz, nf = 12.5db, 3.15v to 5.25v supply, single-ended lo port operation lt5522 400mhz to 2.7ghz high signal level downconverting mixer 4.5v to 5.25v supply, 25dbm iip3 at 900mhz, nf = 12.5db, 50 1 single-ended rf and lo ports lt5524 low power, low distortion adc driver with digitally programmable gain 450mhz bandwidth, 40dbm oip3, 4.5db to 27db gain control lt5525 high linearity, low power downconverting mixer 50 1 single-ended lo and rf ports, 17.6 dbm iip3 at 1900mhz, i cc = 28ma lt5526 high linearity, low power active mixer 3v to 5.3v supply, 16.5dbm iip3, 100khz to 2ghz rf, nf = 11db, i cc = 28ma, C65dbm lo-rf leakage lt5527 400mhz to 3.7ghz high signal level downconverting mixer iip3 = 23.5dbm and nf = 12.5db at 1900mhz, 4.5v to 5.25v supply, i cc = 78ma, single-ended lo and rf ports lt5528 1.5ghz to 2.4ghz high linearity direct quadrature modulator 21.8dbm oip3 at 2ghz, C159.3dbm/hz noise floor, 50 1 , 0.5v dc baseband interface, 4-ch w-cdma acpr = C66dbc at 2.14ghz lt5568 700mhz to 1050mhz high linearity direct quadrature modulator 22.9dbm oip3, C160dbm/hz noise floor, C46dbc image rejection, C43dbm lo leakage rf power detectors ltc ? 5505 rf power detectors with >40db dynamic range 300mhz to 3ghz, temperature compensated, 2.7v to 6v supply ltc5507 100khz to 1000mhz rf power detector 100khz to 1ghz, temperature compensated, 2.7v to 6v supply ltc5508 300mhz to 7ghz rf power detector 44db dynamic range, temperature compensated, sc70 package ltc5509 300mhz to 3ghz rf power detector 36db linear dynamic range, low power consumption, sc70 package ltc5532 300mhz to 7ghz precision rf power detector precision v out offset control, adjustable gain and offset lt5534 50mhz to 3ghz log rf power detector with 60db dynamic range 1db output variation over temperature, 38ns response time ltc5536 precision 600mhz to 7ghz rf detector with fast comparater 25ns response time, comparator reference input, latch enable input, C26dbm to +12dbm input range lt5537 wide dynamic range log rf/if detector low frequency to 800mhz, 83db dynamic range, 2.7v to 5.25v supply


▲Up To Search▲   

 
Price & Availability of LT5560EDDPBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X